Keywords: coronavirus, SARS-CoV-2, ACE2, receptor, livestock, degree of identity, degree of similarity, phylogenetic analysis


Angiotensin-converting enzyme 2 (ACE2) is a receptor for SARS-CoV-2 spike protein on the cell surface and plays a key role in the development of COVID-19. The high conservatism of ACE2 structure in different species and the large number of human contacts with livestock increase the risk of spreading SARS-CoV-2 among the ones if the virus will be able to penetrate and replicate in the cells of such animals successfully. The result of this course of events may be the emergence of the animal reservoirs of coronavirus disease.

To assess this possibility, a comparative analysis of the amino acid sequences of ACE2 receptors for SARS-CoV-2 in different species of livestock with human ACE2 was performed. High degrees of identity and similarity were found for ACE2 receptors of donkey, horse, rabbit, alpaca, lama, dromedary, pig, sheep, goat and cattle (taurine and zebu), lower – for poultry species (chicken, duck and turkey). The data obtained in this study are consistent with the results of previous experiments on the ability of SARS-CoV-2 to interact with ACE2 receptors of different animal species. Although there is evidence of pig, chicken and duck resistance to SARS-CoV-2 by intranasal inoculation, the risk of the virus adaptation to livestock infecting, given the mutational variability of the virus, remains high, which makes relevant the further studies of SARS-CoV-2 interactions with livestock.


Wang, Q., Y. Zhang, L. Wu, S. Niu, C. Song, Z. Zhang, G. Lu, C. Qiao, Y. Hu, K. Y. Yuen, Q. Wang, H. Zhou, J. Yan, and J. Qi. 2020. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 181(4):894–904.e9. DOI: (in English).

Xiao, L., H. Sakagami, and N. Miwa. 2020. ACE2: The key Molecule for Understanding the Pathophysiology of Severe and Critical Conditions of COVID-19: Demon or Angel? Viruses. 12(5):491. DOI: (in English).

WHO. 2020, March 11. WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. URL: (last accessed: 07.09.2021) (in English).

Synowiec, A., А. Szczepański, E. Barreto-Duran, L. K. Lie, and K. Pyrc. 2021. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clinical microbiology reviews. 34(2):e00133-20. DOI: (in English).

Decaro, N., and A. Lorusso. 2020. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Veterinary microbiology. 244:108693. DOI: (in English).

WHO. 2021, March 30. WHO-convened Global Study of Origins of SARS-CoV-2: China Part. URL: (last accessed: 10.09.2021) (in English).

Lv, L., G. Li, J. Chen, X. Liang, and Y. Li. 2020. Comparative genomic analyses Reveal a specific mutation pattern between human coronavirus SARS-CoV-2 and Bat-CoV RaTG13. Frontiers in microbiology. 11:584717. DOI: (in English).

Shatunova, P. O., A. S. Bykov, O. A. Svitich, and V. V. Zverev. 2020. Angiotenzinprevrashhajushhij ferment 2. Podhody k patogeneticheskoj terapii COVID-19. Zhurnal mikrobiologii, jepidemiologii i immunobiologii – Journal of Microbiology, Epidemiology and Immunobiology. 97(4):339–345. DOI: (in Russian).

Huang, Y., C. Yang, X. F. Xu, W. Xu, and S. W. Liu. 2020. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta pharmacologica Sinica. 41(9):1141–1149. DOI: (in English).

Xia, S., Y. Zhu, M. Liu, Q. Lan, W. Xu, Y. Wu, T. Ying, S. Liu, Z. Shi, S. Jiang, and L. Lu, 2020. Fu sion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & molecular immunology. 17(7):765–767. DOI: (in English).

Zhou, P., X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang, H. D. Chen, J. Chen, Y. Luo, H. Guo, R. D. Jiang, M. Q. Liu, Y. Chen, X. R. Shen, X. Wang, X. S. Zheng, K. Zhao, Q. J. Zhen, F. Deng, L. L. Liu, B. Yan, F. X. Zhan., Y. Y. Wang., G. F. Xiao, and Z. L. Shi. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579(7798):270–273. (in English).

Lan, J., J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, and X. Wang. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581(7807):215–220. DOI: (in English).

Needleman, S. B., and C. D. Wunsch. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology. 48(3):443–453. DOI: (in English).

Henikoff, S., and J. G. Henikoff. 1992. Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America. 89(22):10915–10919. DOI: (in English).

Madeira, F., Y. M. Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan, P. Basutkar, A. Tivey, S. C. Potter, R. D. Finn, and R. Lopez. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic acids research. 47(W1):W636–W641. DOI: (in English).

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research. 22(22):4673–4680. DOI: (in English).

Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution. 35(6):1547–1549. DOI: (in English).

Taylor, W. R. 1986. The classification of amino acid conservation. Journal of theoretical biology. 119(2):205–218. DOI: (in English).

Zvelebil, M. J., G. J. Barton, W. R. Taylor, and M. J. Sternberg. 1987. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. Journal of molecular biology. 195(4):957–961. DOI: (in English).

Jones, D. T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data matrices from protein sequences. Computer applications in the biosciences : CABIOS. 8(3):275–282. DOI: (in English).

Microsoft Corporation. 2021. Microsoft Excel. URL: (last accessed 12.09.2021) (in English).

Conceicao, C., N. Thakur, S. Human, J. T. Kelly, L. Logan, D. Bialy, S. Bhat, P. Stevenson-Leggett, A. K. Zagrajek, P. Hollinghurst, M. Varga, C. Tsirigoti, M. Tully, C. Chiu, K. Moffat, A. P. Silesian, J. A. Hammond, H. J. Maier, E. Bickerton, H. Shelton, I. Dietrich, S. C. Graham, and D. Bailey. 2020. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS biology. 18(12):e3001016. DOI: (in English).

Schlottau, K., M. Rissmann, A. Graaf, J. Schön, J. Sehl, C. Wylezich, D. Höper, T. C. Mettenleiter, A. Balkema-Buschmann, T. Harder, C. Grund, D. Hoffmann, A. Breithaupt, and M. Beer. 2020. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. The Lancet. Microbe. 1(5):e218–e225. DOI: (in English).

Shi, J., Z. Wen, G. Zhong, H. Yang, C. Wang, B. Huang, R. Liu, X. He, L. Shuai, Z. Sun, Y. Zhao, P. Liu, L. Liang, P. Cui, J. Wang, X. Zhang, Y. Guan, W. Tan, G. Wu, H. Chen, and Z. Bu. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science (New York, N. Y.). 368(6494):1016–1020. DOI: (in English).

How to Cite
Peka, M. Y., Balatsky, V. N., BozhkovА. І., & Saienko, A. M. (2021). COMPARATIVE ANALYSIS OF HUMAN AND LIVESTOCK АСЕ2 RECEPTORS FOR SARS-COV-2. Animal Breeding and Genetics, 62, 120-129.